Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.07.21258351

ABSTRACT

As SARS-CoV-2 variants continue to emerge globally, a major challenge for COVID-19 vaccination is the generation of a durable antibody response with cross-neutralizing activity against both current and newly emerging viral variants. Cross-neutralizing activity against major variants of concern (B.1.1.7, P.1 and B.1.351) has been observed following vaccination, albeit at a reduced potency, but whether vaccines based on the Spike glycoprotein of these viral variants will produce a superior cross-neutralizing antibody response has not been fully investigated. Here, we used sera from individuals infected in wave 1 in the UK to study the long-term cross-neutralization up to 10 months post onset of symptoms (POS), as well as sera from individuals infected with the B.1.1.7 variant to compare cross-neutralizing activity profiles. We show that neutralizing antibodies with cross-neutralizing activity can be detected from wave 1 up to 10 months POS. Although neutralization of B.1.1.7 and B.1.351 is lower, the difference in neutralization potency decreases at later timepoints suggesting continued antibody maturation and improved tolerance to Spike mutations. Interestingly, we found that B.1.1.7 infection also generates a cross-neutralizing antibody response, which, although still less potent against B.1.351, can neutralize parental wave 1 virus to a similar degree as B.1.1.7. These findings have implications for the optimization of vaccines that protect against newly emerging viral variants.


Subject(s)
COVID-19
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.19.423592

ABSTRACT

ABSTRACT The cellular entry of severe acute respiratory syndrome-associated coronaviruses types 1 and 2 (SARS-CoV-1 and -2) requires sequential protease processing of the viral spike glycoprotein (S). The presence of a polybasic cleavage site in SARS-CoV-2 S at the S1/S2 boundary has been suggested to be a factor in the increased transmissibility of SARS-CoV-2 compared to SARS-CoV-1 by facilitating maturation of the S precursor by furin-like proteases in the producer cells rather than endosomal cathepsins in the target. We investigate the relevance of the polybasic cleavage site in the route of entry of SARS-CoV-2 and the consequences this has for sensitivity to interferons, and more specifically, the IFN-induced transmembrane (IFITM) protein family that inhibit entry of diverse enveloped viruses. We found that SARS-CoV-2 is restricted predominantly by IFITM2 and the degree of this restriction is governed by route of viral entry. Removal of the cleavage site in the spike protein renders SARS-CoV-2 entry highly pH- and cathepsin-dependent in late endosomes where, like SARS-CoV-1 S, it is more sensitive to IFITM2 restriction. Furthermore, we find that potent inhibition of SARS-CoV-2 replication by type I but not type II IFNs is alleviated by targeted depletion of IFITM2 expression. We propose that the polybasic cleavage site allows SARS-CoV-2 to mediate viral entry in a pH-independent manner, in part to mitigate against IFITM-mediated restriction and promote replication and transmission. This suggests therapeutic strategies that target furin-mediated cleavage of SARS-CoV-2 S may reduce viral replication through the activity of type I IFNs. IMPORTANCE The furin cleavage site in the S protein is a distinguishing feature of SARS-CoV-2 and has been proposed to be a determinant for the higher transmissibility between individuals compared to SARS-CoV-1. One explanation for this is that it permits more efficient activation of fusion at or near the cell surface rather than requiring processing in the endosome of the target cell. Here we show that SARS-CoV-2 is inhibited by antiviral membrane protein IFITM2, and that the sensitivity is exacerbated by deletion of the furin cleavage site which restricts viral entry to low pH compartments. Furthermore, we find that IFITM2 is a significant effector of the antiviral activity of type I interferons against SARS-CoV-2 replication. We suggest one role of the furin cleavage site is to reduce SARS-CoV-2 sensitivity to innate immune restriction, and thus may represent a potential therapeutic target for COVID-19 treatment development.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.09.20148429

ABSTRACT

Antibody (Ab) responses to SARS-CoV-2 can be detected in most infected individuals 10-15 days following the onset of COVID-19 symptoms. However, due to the recent emergence of this virus in the human population it is not yet known how long these Ab responses will be maintained or whether they will provide protection from re-infection. Using sequential serum samples collected up to 94 days post onset of symptoms (POS) from 65 RT-qPCR confirmed SARS-CoV-2-infected individuals, we show seroconversion in >95% of cases and neutralizing antibody (nAb) responses when sampled beyond 8 days POS. We demonstrate that the magnitude of the nAb response is dependent upon the disease severity, but this does not affect the kinetics of the nAb response. Declining nAb titres were observed during the follow up period. Whilst some individuals with high peak ID50 (>10,000) maintained titres >1,000 at >60 days POS, some with lower peak ID50 had titres approaching baseline within the follow up period. A similar decline in nAb titres was also observed in a cohort of seropositive healthcare workers from Guys and St Thomas Hospitals. We suggest that this transient nAb response is a feature shared by both a SARS-CoV-2 infection that causes low disease severity and the circulating seasonal coronaviruses that are associated with common colds. This study has important implications when considering widespread serological testing, Ab protection against re-infection with SARS-CoV-2 and the durability of vaccine protection.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL